Canadian scientists find new way to convert blood cells into sensory neurons

Canadian scientists find new way to convert blood cells into sensory neurons
Published on

By NewsGram Staff Writer

In a revolutionary new study, conducted by a team of stem cell scientists led by Mick Bhatia from the McMaster University, Canada, has discovered how to turn adult human blood cells into brain cells, opening the doors to better understanding of every disease in the body.

According to the research, the team can now directly convert adult human blood cells into both central nervous system (brain and spinal cord) neurons as well as neurons in the peripheral nervous system that are responsible for pain, temperature and itch perception. It directly means that, now, about one million sensory neurons can be produced from a blood sample.

This lead to the conclusion that now doctors can more easily study how a person's nervous system cells react and respond to various stimuli.

On being asked about the advantages of the new study, Bhatia, Director of the McMaster Stem Cell and Cancer Research Institute, explained, "Now we can take blood samples and make the main cell types of neurological systems – the central nervous system and the peripheral nervous system – in a dish that is specialized for each patient. Nobody has ever done this with adult blood. Ever."

Bhatia and fellow scientists successfully tested their breakthrough process using both fresh as well as frozen human blood.

Bhatia said, "We can also make central nervous system cells, as the blood to neural conversion technology we developed creates neural stem cells during the process of conversion."

As per the study, the revolutionary patented direct conversion technology has "broad and immediate applications." It paves the way for the discovery of new pain drugs that don't just numb the perception of pain, but actually treat it.

Scientists can actually take a patient's blood sample, and with its help, they can produce one million sensory neurons that make up the peripheral nerves in short order with this new approach.

The study can help the researchers to think and learn about any disease and improving treatments such as: Why is it that certain people feel pain versus numbness? Is this something genetic? Can the neuropathy that diabetic patients experience be mimicked in a dish?

Bhatia, while explaining the results of the study, said that the research will help to understand the response of cells to different drugs and different stimulation responses, and will allow to provide individualized or personalized medical therapy for patients suffering with neuropathic pain.

Akbar Panju, medical director of the Michael G. DeGroote Institute for Pain Research and Care, said, "This bench to bedside research is very exciting and will have a major impact on the management of neurological diseases, particularly neuropathic pain."

logo
NewsGram
www.newsgram.com