Revealed: Why smartphone batteries explode

Revealed: Why smartphone batteries explode
Published on

By NewsGram Staff Writer

The entire internal working of lithium-ion (Li-ion) batteries that leads to their overheating and exploding, has finally been revealed by scientists, according to a report published by Nature communications.

According to scientists, understanding how Li-ion batteries fail and potentially cause a chain reaction is important for improving their design and make them safer to use and transport.

Speaking on the experiment to study the Lithium batteries, Donal Finegan from University College London (UCL) said, "We combined high energy synchrotron X-rays and thermal imaging to map changes to the internal structure and external temperature of two types of Li-ion batteries as we exposed them to extreme levels of heat."

The scientists exposed the battery shells to temperatures in excess of 250 degrees Celsius, and then looked at the effects of gas pockets formation, venting and increasing temperatures on the layers inside two distinct commercial Li-ion batteries

The battery with an internal support remained largely intact up until the initiation of thermal runaway, at which point the copper material inside the cell melted indicating temperatures up to 1,000 degrees Celsius.

This heat spread from the inside to the outside of the battery causing thermal runaway.

In contrast, the battery without an internal support exploded causing the entire cap of the battery to detach and its contents to eject.

Prior to thermal runaway, the tightly packed core collapsed, increasing the risk of severe internal short circuits and damage to neighbouring objects.

"Hopefully from using our method, the design of safety features of batteries can be evaluated and improved," said corresponding author Paul Shearing, also from UCL.

logo
NewsGram
www.newsgram.com