A Green Chemistry Breakthrough: A research team has developed an innovative and sustainable method to extract collagen from sardine bones using water. [Newswise] 
Research

A Green Chemistry Breakthrough: Sustainable Collagen Extraction from Sardine Bones Using Banana Peel Water Extracts

A research team has developed an innovative and sustainable method to extract collagen from sardine bones using water extracts from banana peels, a common agricultural waste in Malaysia. This method addresses environmental concerns associated with traditional collagen extraction methods and offers a new approach to valorizing waste materials.

NewsGram Desk

A Green Chemistry Breakthrough: A research team has developed an innovative and sustainable method to extract collagen from sardine bones using water extracts from banana peels, a common agricultural waste in Malaysia. This method addresses environmental concerns associated with traditional collagen extraction methods and offers a new approach to valorizing waste materials.

The global fisheries industry plays a crucial role in food security, producing significant volumes of waste from inedible parts such as bones and scales. Sardine bones, rich in collagen, present an underutilized resource with immense potential for various industries, including medical, cosmetic, nutraceutical, and food sectors. Traditional extraction methods often involve harsh chemicals and generate harmful waste, necessitating the exploration of eco-friendly alternatives.

study published in Food Materials Research on 03 September 2024, provides a sustainable alternative to mammalian-derived collagen, reducing reliance on traditional extraction processes that harm the environment.

The research employed a statistical modeling approach to optimize the collagen extraction process from sardine bones using water extracts from banana peels. A quadratic regression model was developed using experimental data to explore the relationship between extraction temperature (T), sardine bone-to-water extract ratio (R), and extraction time. The model included linear, interactive, and quadratic terms to provide a comprehensive understanding of these variables' effects on collagen yield. Statistical analysis, including T- and p-values, revealed that extraction time was the most significant factor, with longer times increasing yield until degradation occurred at extended durations beyond 72 hours. The model’s validity was confirmed through ANOVA, which indicated a significant regression fit (p-value of 0.000), with the lack-of-fit test suggesting the model adequately explained the data (p-value of 0.062). Extraction time emerged as the most influential variable, positively affecting yield, followed by the sardine bone-to-solvent ratio, which increased yield up to a ratio of 1:25. Temperature was the least influential but still showed a positive correlation with yield, optimizing around 40 °C. The overall goodness of fit, represented by an R² value of 0.9835, indicated that the model accounted for 98.35% of the variability in extraction yield. The response optimizer tool predicted that the optimal extraction conditions—40 °C, a bone-to-solvent ratio of 1:24, and 74 hours—would achieve a maximum yield of 9.21%, closely aligning with the experimental validation yield of 9.82%. These findings demonstrate the effectiveness of using statistical modeling to refine and predict optimal extraction conditions, providing valuable insights into the parameters that most significantly impact the sustainable extraction of collagen from marine waste.

The water extracts were also tested on other fruit wastes, including mango peel, coconut husk, and pineapple pomace, yielding collagen extraction rates of 11.79%, 2.10%, and 13.58%, respectively. These findings highlight the potential of using diverse agricultural waste materials for sustainable collagen extraction.

According to the study's lead researcher, Dr. Azlan Hassan, “This research demonstrates the potential of using fruit waste to extract valuable compounds like collagen. It’s a great example of how we can turn waste into wealth while promoting environmental sustainability.”

This research highlights a promising method for extracting collagen using environmentally sustainable solvents derived from agricultural waste. By turning fruit waste into valuable resources, this approach aligns with the principles of green chemistry and waste valorization, offering significant benefits for the environment and various industries. As the world seeks sustainable alternatives, this method could pave the way for more eco-friendly production practices in the future. Newswise/SP

Record 8 million people diagnosed with TB in 2023, WHO reports

Companies find solutions to power EVs in energy-challenged Africa

Taliban publicly flog Afghan woman, 3 men amid UN outcry

Study uncovers alarming patterns in the effects of family violence

Deciphering the genome of an endemic species in the Canary Islands to protect the archipelago’s biodiversity