General

IIT- Guwahati Researchers Reveal New Clues on How Stars Die

NewsGram Desk

Researchers from the Indian Institute of Technology IIT Guwahati have revealed important clues to understand the death of massive stars and have also revealed the problems with the existing models.

The study, done in collaboration with researchers from Max Planck Institute for Physics, Munich, Germany, and Northwestern University, US, indicates that all three species of the neutrinos from the supernovae are important contrary to the common treatments with only two flavours.

Neutrinos are considered to be the most crucial ingredient in the mechanism of core-collapse supernova explosions, death of large, massive stars. And supernovae is the super explosions at the time of death of large massive stars are considered to be the cradle of birth for new stars and synthesis of the heavy elements in nature.

Follow NewsGram on Facebook to stay updated.

At the end of their life, the stars, especially massive ones, collapse resulting in an immense shock wave that causes the star to explode, briefly outshining any other star in its host galaxy.

The study of supernovae and the particles they release helps us understand the universe because almost all matter that makes up the universe is a result of these massive explosions.

"However, the mechanism of these super explosions is not yet completely solved and has remained one of the enigmas of nature," said the researcher, Sovan Chakraborty, Assistant Professor, Department of Physics, IIT Guwahati.

The study was done in collaboration with researchers from the Max Planck Institute for Physics, Munich, Germany, and Northwestern University, US. Flickr

The solutions to the toughest challenges to the core-collapse mechanism of the huge supernovae come from the tiniest subatomic particles called neutrinos, according to a paper published in the journal Physical Review Letters (PRL).

During the core-collapse supernova explosion, neutrinos are created in several particle processes. Due to their neutral nature and extremely weak interaction with stellar matter, the neutrinos escape the dying star and carry 99 per cent energy of the collapsing star.

Thus the tiny neutrinos are the only messenger bringing information from the deepest interiors of the star.

"This information is very crucial for the reason that in the extremely dense supernovae core neutrinos interact with other neutrinos and may interchange flavours. This conversion may happen rapidly (in nanosecond time scale) and flavour interchange can affect the supernovae process as the different flavours are emitted with different angular distribution," Chakraborty said.

"These 'fast' conversions are nonlinear in nature and are not confronted in any other neutrino sources but supernovae. We for the first time did a non-linear simulation of fast conversion with 'all' the three neutrino flavours in supernovae," Chakraborty added.

This becomes possible as new supernova simulations show the presence of muons in the supernovae and in turn produce asymmetry between muon neutrinos and antineutrinos, taken to be zero otherwise, implying three flavour effects. (IANS)

Future of Education with Neuro-Symbolic AI Agents in Self-Improving Adaptive Instructional Systems

Lower turkey costs set table for cheaper US Thanksgiving feast this year

Suicide bombing kills 12 Pakistan soldiers

Dark energy pushing our universe apart may not be what it seems, scientists say

Climate change boosted hurricane wind strength by 29 kph since 2019, study says